Звоните: Пн.-пт.: 09.00 — 18.00

+7 (499) 350-94-14

Заказать звонок

Москва, ул. Флотская, дом 5, корп. 2

Корзина
ГлавнаяКондиционированиеКаталог кондиционеровМультизональные VRF и VRV системы › Проектирование мультизональных систем

Проектирование мультизональных (vrf и vrv) систем кондиционирования

Проектирование мультизональных систем

Мультизональная система – это один из вариантов решения задачи по кондиционированию нескольких помещений сразу. К одному внешнему блоку подключают несколько внутренних блоков, причём количество последних может достигать нескольких десятков, а тип их может быть разным: кассетные, канальные, потолочные, настенные. Таким образом каждое помещение получает свою систему поддержания микроклимата, подобранную специально для неё. Мощные наружные блоки способны осуществлять перекачку хладагента на расстояние более 100 м и при перепадах высоты до 50 м. Благодаря этому наружные блоки можно устанавливать в любом удобном месте.

Проектирование VRF-систем кондиционирования составляет значительную часть общего строительного проекта в разделе ОВ (отопление и вентиляция), так как в проектируемых и реконструируемых зданиях необходимо обеспечивать комфортный микроклимат для пребывания людей в любой части здания. Поддержание оптимальных параметров воздуха особенно важно в жаркий и переходный периоды года.

Компании - производители оборудования VRF - систем кондиционирования не ограничиваются только его изготовлением. С целью упрощения монтажа, производства пуско-наладочных работ и последующей эксплуатации VRF - систем производители разрабатывают и поставляют программное обеспечение, облегчающее проектирование мультизональных систем кондиционирования и их внедрение на тех или других объектах.

При проектировании мультизональных VRF - систем кондиционирования решается ряд стандартных задач: выбор количества и моделей наружных и внутренних блоков, расчет диаметров подводящих фреонопроводов, подбор дополнительных опций и аксессуаров системы.

Роль инженера – проектировщика сводится к изучению поэтажных планировок здания, к рациональному размещению оборудования в помещениях, к разработке вместе с заказчиком качественного грамотно составленного технического задания (ТЗ). От того, насколько правильно будут сформулированы задачи в ТЗ, насколько полно будут охвачены и учтены все требования СНиП и пожарной безопасности, будет зависеть эффективность и надежность работы проектируемой VRF – системы.

На основании выбранных инженерных решений, выбранных заказчиком необходимых опций VRF – системы, производятся технические расчеты, создаются аксонометрические схемы, изготавливаются рабочие чертежи, составляются спецификации оборудования и материалов. Эту трудоемкую часть проектных работ могут выполнять компьютерные программы, разработанные производителями VRF – систем.

Проектирование VRF - систем начинается с изучения поэтажной планировки помещений и выполнения замеров объекта для оценки необходимой тепловой мощности для обогрева или охлаждения воздуха. Определяется также необходимая мощность для подвода электропитания устанавливаемого оборудования.

Проектирование мультизональных VRF - систем кондиционирования выполняется в следующей последовательности:

Приведенный перечень проектных работ включает обязательный стандартный набор необходимых пунктов проекта. Каждый конкретный проект может быть дополнен другими необходимыми пунктами.

Расчетные параметры наружного воздуха.

Выбор системы кондиционирования воздуха и ее функционирование во многом зависит от внешней среды. Такие факторы, как температура, влажность (либо энтальпия) воздуха, интенсивность солнечной радиации, скорость и направление ветра, количество выпадающих осадков (дождя, снега, тумана и т.п.), наряду с факторами внутренней среды зданий и сооружений, влияют на тепловлажностный баланс помещений. От них существенно зависят поступления или потери тепла и влаги через ограждающие конструкции. Кроме того, от них, в первую очередь от температуры и влажности, зависит сам процесс кондиционирования, выбор способов обработки приточного воздуха, установочная мощность СКВ и ее энергопотребление, выбор систем управления и автоматического регулирования СКВ.

Расчетные внешние метеорологические условия для зимнего и летнего времени года выбираем согласно СНиП2. 04.05-91*.

На холодный период года для СКВ всех классов в качестве расчетных следует принимать параметры воздуха "Б".

На теплый период года:

Параметры наружного воздуха для жилых, общественных, административно-бытовых и производственных помещений для систем вентиляции следует принимать:

На основе исходных данных проводятся расчеты тепло- и влаговыделений в помещении. На основании тепловлажностного баланса производим расчет воздухообмена, т.е. определяем количество воздуха, необходимое для ассимиляции избытков тепла и влаги в помещении и создания оптимальных или допустимых параметров воздуха.

Этапы проектных работ

Проектирование мультизональных систем кондиционирования ведется в основном в два этапа.

I-й этап — так называемый проект ТЭО (технико-экономическое обоснование). На этой стадии проектирования по укрупненным показателям производят выбор и технико-экономическое обоснование типа системы, определяют технические площади для установки этого оборудования, а также определение в первом приближении ее основных характеристик: производительности по воздуху, холоду и теплу, типа и числа центральных или автономных кондиционеров, их расположения, типа и расхода тепло и хладоносителей, типа и числа холодильных машин, насосов, установленной мощности электрооборудования, массы системы. При этом устанавливают предварительную стоимость системы. Разрабатывают принципиальную (предварительную) схему системы. Ранее в практике проектирования за этапом ТЭО следовал технический проект. С появлением блочного оборудования эти две стадии проектирования объединены и теперь в практике проектных организаций это ТЭО. В коммерческих фирмах — это технический проект. После утверждения заказчиком ТЭО разрабатывают рабочий проект — это наиболее ответственная стадия проектирования.

2-й этап — рабочий проект разрабатывается на основании строительных планировок, теплотехнических характеристик строительных конструкций и технологического (подробного со спецификацией) задания. Производят расчет тепловлаговыделений и на его основании расчет воздухообмена для каждого помещения, обеспечивающий требуемые параметры. Подбирают оборудование (с определением всех его характеристик), обеспечивающее необходимый воздухообмен и потери напора в сети. Окончательно выбирают тип и принципиальную схему системы и определяют ее характеристики, количество воздухораспределителей и т.д.

Вычерчивают планы с нанесением оборудования и разводкой сетей воздуховодов и трубопроводов.

Далее чертят аксонометрические схемы сетей воздуховодов и трубопроводов. Выполняют аэродинамические и гидравлические расчеты. Определяют уровень шума. Заполняют спецификации по оборудованию, материалам, арматуре и т.д. с указанием фирмы-изготовителя и стоимости. После согласования заказчиком проекта в СЭС и пожарной инспекции, если есть замечания по проекту, вносят коррективы. На основе этой документации производят заказ оборудования.

Ошибки при проектировании

 Заниженная производительность внутреннего блока.

Ошибочный подход: Тут все просто – знаем нужную холодопроизводительность, смотрим в каталог и выбираем внутренний блок с ближайшей производительностью. Это не правильно.

Дело в том, что производительность внутренних блоков VRF систем приводятся при стандартных условиях, обычных для Японии (ISO5151), но нестандартных для России (ГОСТ30494). Это в первую очередь  температура внутреннего воздуха. 

Стандартные параметры испытания кондиционеров VRF.

Параметры

В Японии(ISO5151)

В России(ГОСТ30494)

1. Температура внутреннего воздуха по сухому термометру в режиме охлаждения

27 °С

20-22 °С

2. Относительная влажность воздуха

50%

30-60%

Как видно из таблицы, российские нормативные параметры внутреннего воздуха отличаются от номинальных параметров, установленных для испытания кондиционеров. Очевидно, что производительность мультизональных систем VRF при изменившихся расчетных параметрах также измениться.

Производительность внутренних блоков

Фактическая производительность внутренних блоков будет меньше указанной в каталоге ни 15-25%.

Подбор наружного блока «с запасом».

Ошибочный подход: Суммируем производительность внутренних блоков и подбираем наружный блок по каталогу с небольшим запасом.  Это не правильно.

Дело в том, что фактическая производительность наружного блока VRF систем будет больше указанной в каталоге за счет низкой расчетной температуры наружного воздуха. Если в Японии считается расчетной +35С, то у нас это +30С и ниже для большинства городов страны. Второй фактор, позволяющий уменьшить производительность наружного блока VRF системы, это неодновременность теплоизбытков на внутренних блоках. Только за счет этого фактора производительность наружного блока снижается на величину от 10% до 30% от суммарной мощности внутренних блоков.

Таким образом, запас наружного блока по мощности никогда не будет использован при фактической эксплуатации.

Все системы кондиционирования на объекте – VRF.

С точки зрения режима функционирования, VRF – это мультизональная система. Т.е. она предназначена для обслуживания большого количества относительно небольших помещений. Но часто в проектах встречается использование мультизональной системы кондиционирования для больших помещений, кинотеатров, залов совещаний и т.д. Принципиально система работать будет, но функция независимого регулирования производительности каждого внутреннего блока окажется не востребованной, а значит нерационально оплаченной заказчиком. Намного эффективнее использовать комбинацию между VRF системами и большими мульти-сплит системами – V Multi. Ниже в таблице приведена стоимость оборудования для кондиционирования зала на 28 кВт холода.
 

Зал совещаний

VRF KXZ

V MULTI

1. Наружные блоки

FDC224KXZРE1

FDC250VS

2. Максимальная длина трубопроводов

120 метров

70 метров

3. Внутренние блоки

FDT112KXE6F - 2 шт

FDT125VF - 2 шт

4. Цена итого, долл.

11 689 + 3 179*2=18 047

8 961 + 2 033*2=13 027

Примечания: цена – розница; подкассетницы, тройники и пульты управления одинаковы.

Очевидно, что при одинаковой производительности кондиционирование больших помещений с помощью однозональных кондиционеров V-MULTI обойдется дешевле. Поэтому на практике часто встречаются проекты с комбинированным применением VRF систем и больших полупромышленных сплит систем. Экономически это оправдано. 

Вертикальная компоновка системы.

Так как VRF системы допускают перепад высот между внутренними блоками до 15-18 метров, возможна вертикальная компоновка систем. Это не желательно.
 

Сравнивая конфигурацию систем VRF с более простыми и понятными системами водяного отопления, нужно отметить разный подход к обвязке трубопроводами внутренних блоков.

 

Для мультизональной системы VRF характерна горизонтальная обвязка внутренних блоков, а для систем водяного отопления – преимущественно вертикальные коллекторные трубопроводы. Эта разница объясняется разным фазовым составом энергоносителя. Вода в системах отопления – это всегда жидкость с примерно одинаковой плотностью. А фреон на входе во внутренний блок – это жидкость (а на больших длинах трубопроводов – смесь жидкости и газа), на выходе из внутреннего блока – газ. Поэтому для мультизональных систем VRF критично равномерное поступление потоков во внутренние блоки.

В случае большой разницы по высоте между внутренними блоками возникает неравномерное поступление хладагента к ним, и может провоцироваться ситуация, когда нижние внутренние блоки будут работать значительно лучше на холод, чем верхние. Особенно это критично в случае недоразмеренных наружных блоков. Принципиально делать большой перепад между внутренними блоками возможно (более 15 метров), но тогда принимать производительность наружного блока VRF нужно равной производительности внутренних.

Объединение наружных блоков в один фреоновый контур.

Современные VRF системы кондиционирования позволяют комбинировать наружные блоки VRF в единый фреоновый контур до суммарной мощности 200 кВт и более. И при проектировании часто возникает желание сделать одну большую систему на все здание или весь этаж. Это не правильно.

Дело в том, что в случае аварийной разгерметизации фреонового контура может произойти попадание хладагента в зону дыхания людей обслуживаемых помещений. Фреон R410A тяжелее воздуха, не является токсичным веществом и в небольших концентрациях безвреден для человеческого организма. Однако R410A не поддерживает дыхание, в случае попадания человека в зону заполнения фреоном происходит удушье и потеря сознания. Если в течение 15 минут человека не эвакуировать из данного помещения, помочь ему будет уже невозможно.

Если для некомбинированных фреоновых систем кондиционирования количество хладагента в пределах одного контура не превышало 20 кг, то для комбинированных VRF систем эта цифра уже значительно больше и доходит до 80 кг. Обязательным условием при проектировании систем кондиционирования должна быть проверка на аварийную концентрацию хладагента в обслуживаемых помещениях.

Аварийные концентрации хладагента в помещениях

R22

R134A

R407C

R410A

300 гр./м3

250 гр./м3

310 гр./м3

420 гр./м3

Какие существуют варианты выхода из сложившейся ситуации?

Необходимо разбить комбинированную систему на несколько независимых таким образом, чтобы количество фреона в одной системе не могло привести к превышению аварийной концентрации даже в самом маленьком помещении. Для этого удобно пользоваться следующей таблицей.

Площадь самого маленького помещения, м2

15

20

25

30

50

Максимальная мощность системы VRF, кВт

37

49

61

74

121

Не учитывается тип внутренних блоков.

Практическое рассмотрение данного вопроса было получено на конкретном примере: в 2000-м году я работал в службе эксплуатации большого административного здания. Здание состояло из двух одинаковых корпусов, в которых были смонтированы системы кондиционирования VRF. И при их эксплуатации из первого корпуса поступали каждый день звонки с жалобами: «из кондиционера дует», «сквозняк», «поверните жалюзи в другую сторону» и т.д. Попытки повернуть жалюзи и отрегулировать направление воздушного потока по сути ни к чему не приводили – в новом направлении также сидели люди и жалобы уже стали поступать от них. Парадокс ситуации был в том, что во втором корпусе, где также были установлены VRF системы, жалоб на «сквозняк» не было! Почему это происходило? – потому что в первом корпусе были установлены настенные внутренние блоки, а во втором – четырех-поточные кассеты.

Настенный тип местного кондиционера. Режим охлаждения.
 

Кассетный тип местного кондиционера. Режим охлаждения.

 

В отличие от настенных кондиционеров, классические кассетные блоки распределяют воздух в четырех направлениях, а не в одном. При одинаковой высоте помещения уровень раздачи кондиционированного воздуха в кассетных моделях максимально приближен к плоскости потолка и значительно выше, чем, например, у настенных кондиционеров.  Благодаря этому при одинаковой мощности внутренних блоков кассетные блоки обеспечивают более равномерную обработку внутреннего воздуха и меньшие градиенты температур в помещении.

Не учитывается уровень шума внутренних блоков.

Внутренние блоки подбираются, как правило, только по требуемой мощности. Уровень шума при этом, почему то не учитывается.

Системы кондиционирования воздуха максимально приближены к человеку, находятся рядом с ним во время его работы и отдыха. Поэтому такой немаловажный фактор, как шум от них оказывает колоссальное воздействие на состояние эмоционального и физического комфорта человека. Неудивительно, что шумовые характеристики окружающей человека среды – в том числе шум от систем кондиционирования воздуха – нормируются (табл).
 

Назначение помещений или территорий

Уровень звукового давления (эквивалентный уровень звукового давления) Lр, дБ

Lp, дБА

63

125

250

500

1000

2000

4000

8000

Номера гостиниц категории А с 7.00 до 23.00

59

48

40

34

30

27

25

23

35

Номера гостиниц категории А с 23.00 до 7.00

51

39

31

24

20

17

14

13

25

Жилые комнаты квартир, с 7.00 до 23.00

63

52

45

39

35

32

30

28

40

Жилые комнаты квартир, с 23.00 до 7.00

55

44

35

29

25

22

20

18

30

Залы совещаний

63

52

45

39

35

32

30

28

40

Офисные помещения

71

61

54

49

45

42

40

38

50

Залы кафе, ресторанов

75

66

59

54

50

47

45

43

55

Торговые залы магазинов, вокзалов, спортзалы

79

70

63

58

55

52

50

49

60

Территории жилых зданий с 7.00 до 23.00

75

66

59

54

50

47

45

44

55

Территории жилых зданий с 23.00 до 7.00

67

57

49

44

40

37

35

33

45

Как видно из таблицы, значения максимального уровня шума значительно отличаются по времени (день и ночь). В дневное время использования систем кондиционирования воздуха наблюдаются максимальные теплоизбытки в большинстве помещений. Поэтому расчетная (максимальная) мощность кондиционера подбирается исходя из дневных теплоизбытков.

С точки зрения теплотехнических характеристик кондиционера максимальная мощность охлаждения наблюдается при максимальных скоростях вращения вентилятора внутреннего блока. Следовательно, расчетным режимом в дневное время является режим максимальной скорости вращения вентилятора внутреннего блока. Чем больше скорость вентилятора, тем больше уровень шума от кондиционера, но тем больше его производительность по холоду.

С другой стороны в ночное время в спальнях гостиниц и квартир теплоизбытки значительно меньше, чем в дневное время, за счет отсутствия главным образом солнечной радиации. Поэтому для поддержания требуемой температуры достаточно минимальной производительности кондиционера на низкой скорости вентилятора внутреннего блока.

К примеру, для гостиниц категории А оптимальными являются только внутренние блоки канального типа низконапорные FDUT.

 

Проектирование систем кондиционирования с частичной нагрузкой.

Часто требуется этапный ввод в эксплуатацию систем. Например, наружный блок обеспечивает холодом одну часть помещений, которые уже введены в эксплуатацию и к нему планируется также подключить другую часть внутренних блоков, которые будут смонтированы позже. Чтобы меньше переделывать системы, проектировщик заранее закладывает все трубопроводы под 100% блоков, но на первом этапе будут смонтированы 60%. На первый взгляд все правильно, т.к. большинство систем позволяют проектировать загрузку наружного блока от 50 до 130%. Неиспользуемые трубопроводы предварительно запаиваются.

На первый взгляд все нормально. Коэффициент загрузки смонтированной системы выше минимально возможной - 50%. Система может работать при такой загрузке. Нарушений документации нет. Но по факту так делать нельзя.

Что происходит при запуске системы: наружный блок нормально запускается, работает одну – две недели, а затем выходит из строя компрессор. Причина этого как раз в частичной загрузке наружного блока, а точнее в неиспользуемых трубопроводах. Дело в том, что с фреоном циркулирует также масло. Система периодически (раз в 12 часов) включает режим сбора масла, при котором все внутренние блоки открывают максимально регулирующие клапана, наружный блок включает максимальную производительность и жидкий фреон смывает масло с трубопроводов и внутренних  блоков, возвращая масло в наружный блок. Неиспользуемые  трубопроводы заглушены, движения фреона там нет, поэтому они срабатывают как своеобразные аккумуляторы масла. И фреоновое масло постепенно уходит из компрессоров и накапливается в трубопроводах. Финал печален – от недостатка масла компрессоры заклинивает.

Как решить эту проблему? Очень просто. Нужно заранее заложить запорные клапана на жидкостных и газовых трубопроводах сразу после тройников. Неиспользуемые трубопроводы отсечь клапанами от остальной системы. Для удобства запуска желательно также заложить клапана Шредера, чтобы можно было вакуумировать и заправлять фреоном ответвления не останавливая всю систему.
 

Отправьте заявку и получите КП
Подберем оборудование, удешевим смету, проверим проект, доставим и смонтируем в срок.

    Каталог кондиционеров

    Отправьте заявку
    и получите коммерческое предложение

    Эксклюзивные условия по цене на оборудование Dantex!

    +7 (499) 350-94-14

    Закрыть

    Наш менеджер перезвонит Вам: